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A PIECEWISE-HOMOGENEOUS PLANE WITH A SEPA~TING B~~DARY IN THE FORM OF THE 
SIDES OF AN ANGLE AND A SY~ETRICAL CUT ORIGINATING FROM THE VERTEX* 

L.A. KIPNIS 

A plane problem of the equilibrium of an elastic plane formed by two 
different half-planes joined together along a boundary in the formof two 
sides of an angle, is considered. A symmetrical cut originates at the 
apex and a known, constant normal load is applied to its edges. A 
functional Wiener-Hopf equation of the problem is given and its exact 
closed solution is constructed. The stress intensity coefficient at the 
cut end is determined. 

Let us consider the equilibrium of an elastic plane consisting of 
two different half-planes coupled rigidly along a boundary representing 
a set of rays O=*a,O<a<n (seethe figure). Young's moduli and 
Poisson's ratio of the right and left half-plane are, respectively, E,,v, 
and E,, v,. When ll=O,r<L, we have a cut, with given constant normal 
loads applied to its edges. The stresses vanish at infinity. We require 
to find the stress intensity coefficient at the right end of the cut. 

Confirming ourselves to considering the half-plane 0<0gn, we can 
write the boundary conditions for the symmetrical problem formulated in 
the form 

0 = a, [UsI = ['* 1 = 0, fuel = fz+l = 0 ‘(1) 

\ 

8 = IT, T,@ = 0, U@ = 0; e = 0, fre = 0 

0 = r = - e = r = 8=-n: 0, < 1, “e a; 0, > 1, U@ 0 42) 

\ Here se, r,_e, 9 axe the stresses, u,,u, the displacements, [N] is a 
discontinuity of magnitude N, and Q is a given quantity. 

When r-0, we have an asymptotic form representing a solution of the 
problem of a piecewise-homogeneous plane with a symmetrical semi-infinite cut emerging from 
the apex 0, whose edges are stress-free. The solution is constructed using the method of 
singular solutions /l/. In particular we have 

0 <e < IT, r+ 0, ee = 0 (r$ 7* = 0 (r\), 0, = 0 (rh) 

Here b is a root of the equation 

D(--5--i)=O 
I) = A&P - [A& - 46& - (i+ xX) (i + xp) sin &a&+ - 486% 
A = sin 2x p-a)- P sin 2a, A, = x,sin Za (n - a) + z sin 2% 
6 = sir&a - z*sin%, d, = (1 + x1)* - d(x, sin%a + z* sida) 
Ir, = (1 + ~1) (1 + %) - 4 (% sides + 2% sin+4 

Ee (I+ wt 
p = E, (i + VY) ’ 

xj='3--4vj (j=i,2) 

unique in the interval (--i,O). 
When a=&2 the above equation becomes identical with the characteristic equation of 

the zak-Williams problem /l, 2/ of a crack perpendicular to the boundary separating the 
different elastic media. 

Applying the integral Mellin transform with a complex parameter p /3/ to the equations 
of equilibrium, the condition of compatibility of deformation, Hooke's law and conditions (1) 
and taking into account conditions (2), we arrive at the following functional Wiener-Hopf 
equation: 

ar (~1 = ts p= G @I I@+ W -t g WI, g (P) = - 0 ,’ @ + 91 (3) 
t-%<Rep<%. O<%,,<*) 

G(P)= 2 
AA,k=-[AA,+A&--(l+x,)(t +xg)sin~px] k+ AcA> 

D (PI tg P= 

A,, = sin 2pa + p sin Za, A, = x, sin 2pa - p sin 2a 
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Since ua (r, 0)~ 0 as r-i and r-0, we have 
@- (0) = 0 

Using the factorization 

G (P) = G+ @)/@ (P) (Rep = 0) 

G+(P), Rep<0 

G-(P). Rep>0 

PC@ Ps = K+(P) C(P). fi (p) = r(i T p)lr (l/2 r p) 

(F(Z) is the Euler gamma function), we can rewrite (3) as 

P@+ (P) G+ (PI 
K+(P) - (p y;;f+‘(,, = cp- (p) K- (p) G- (P) W P = 0) 

Usinq the representation 
G+ (P) 

(P+I)K+(P) =A [ 
G+(P) G+(--1) 

Kfo 
-- 

K+(-i) 

(Rep=O) 

we obtain, in accordance with (7), 

+ 
G+(-4) 

(P + i) K+ C--i) 

(4) 

(5) 

(6) 

(7) 

P@+ (P) G+ (P) GP 
K+ (P) 

_- - 
P+i c G+ (P) F+(- i) 

K+ (PI -R+o= 1 

(p ~&&!. i) + @- (PI K-(P) G- (P) (He P = 0) 

(8) 

The function on the left-hand side of (8) is analytic in the half-plane Rep<O, and the 
function on its right-handsideis analytic in the half-plane Rep>O. Therefore both these 
functions are equal to a single function analytic in the whole plane p. 

Using the well-known asymptotic expression for an elastic field near the right end of a 
cut /l/, we find @-moo) that 

a+(P) - K/f-- 2~1, W (p) - - K,ll/w (9) 

(KI is the stress intensity coefficient at the right end of the cut). 
From (5), (6), (9) it follows that the functions on the left and right side of (8) tend, 

as p-03, to the constant 

c = oG+ (-1)/K+(A) - K,/f/zI 

By Liouville's theorem the only analytic function is identically equal to a constant c 
over the whole plane p. In particular, W (O)K-(0)6(0)=e. According to (4), the last equation 
implies that c= 0. We write the solution of the functional equation as follows: 

[ 
G+ (P) G+(-1) lIl+(p)=* --- 
K+ (P) K+ (- 1) 1 KC (P) - 

G+ (P) 
(Re P <O) 

W(p) =- 
apG+ (- 1) 

(p+i)K+(--)K-(P)@-(P) (Rep>O) 

Using this solution and the inversion formula, we can find the stresses and displacements 
in the problem in question. 

From the last formula we obtain (p-00) 

@- (P) - - G+ (-1) of&la (10) 

According to (9), (lo), 

K,=G+(-l)ofsm (ii) 
The values of the function G+(--l)for yl=vt= I/* and some values of k and cz are given in 

the table below 

a, deg. k = 0,001 

I 
2,458 Q:F$ 0.587 0.376 
2,034 0,675 
1,736 

0,523 
0.750 

i ,521 
1.256 

0:859 
-.--- 
0,814 X% 

I;124 
0,929 0,909 0’876 

4,055 
0,971 0,963 0:950 

1,029 
0,994 
0,999 

0,999 
0,994 8:E 

If E,=E,,v,=v, (a homogeneous plane with a cut), then from (3) it follows that G(p) = i 
and (11) becomes identical with the well-known result for a Griffith crack. 
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III the same manner we solve the problem for the case when the crack edges are stress- 

free and the given asymptotic form representing the solution of the problem of a piecewise- 

homogeneous plane without a cut is realized at infinity. The latter solution is constructed 
using the method of singular solutions, and in this case the Wiener-Hopf equation differs 

from (3) in the form of the function g(p) only. 
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